Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Article | IMSEAR | ID: sea-192276

ABSTRACT

Background and Objective: Various types of osteoconductive graft materials are used for the management of alveolar bone defects arising out of periodontal disease. Inorganic, self-setting, bioactive bone cements are suggested to be most appropriate because they can conformally fill the bone defect and resorb progressively along with the regeneration of the host site. A new calcium sulfate-based bioactive bone cement (BioCaS) is developed, having simplicity and effectiveness for bone grafting applications. The response of primary human periodontal ligament (hPDL) cells to this material is investigated through in vitro cell culture model so as to qualify it for the repair of periodontal infrabony defects. Method: The BioCaS was designed as powder-liquid combination with in-house synthesized high purity calcium sulfate hemihydrate incorporating hydrogen orthophosphate ions. hPDL cells were isolated, cultured and characterized using optimized primary cell culture techniques. The cytotoxicity and cytocompatibility of the BioCaS samples were evaluated using the hPDL cells, with hydroxyapatite ceramic material as control. Osteogenic differentiation of the hPDL cells in presence of BioCaS was also evaluated using Alizarin red staining, Alizarin red assay, Von Kossa staining and Masson's trichrome staining. Results: The primary cell culture techniques yielded a healthy population of periodontal ligament cells, with fibroblast morphology and characteristic marker expressions. The hPDL cells exhibited good viability, adhesion and spreading to the BioCaS cement in comparison to sintered hydroxyapatite. In addition, the cells differentiated to osteogenic lineage in the presence of the BioCaS cement, without extraneous osteogenic supplements, confirming the inherent bioactivity of the cement. Conclusion: The new BioCaS cement is a potential candidate for the repair of periodontal defects.

2.
Article in English | IMSEAR | ID: sea-154530

ABSTRACT

Background: Calcium phosphate cements (CPC) are a group of biomaterials possessing wide scope of use in various branches of medical science. These materials have been proposed to be highly biocompatible and osteoconductive. This study is based on a newly developed CPC formulation (Chitra-CPC) and is aimed at the evaluation of its biocompatibility through an Endodontic Usage Test in a porcine study model. Objective: To evaluate the periapical tissue reaction to Chitra-CPC when used as a root canal sealer/filler material in comparison with a resin sealer, AH Plus (Dentsply). Materials and Methods: The procedure was done on porcine animal model following the ISO 7405 criteria. The material was implanted intentionally into the periapical area of 36 teeth through a root canal procedure carried out in six animals which were divided equally among 1-month and 3-month time periods. Results were based on the histological evaluation of the autopsied specimens after the prescribed time periods. Results: Mild to moderate periapical tissue reaction was found in Chitra-CPC samples belonging to the 1-month time period, whereas majority of the 3-month CPC samples showed an absence of inflammation. Samples of AH Plus in 1-month period showed severe to moderate inflammation, whereas 3-month AH Plus samples had a mild to moderate inflammation. Conclusions: Chitra-CPC is a biocompatible material.


Subject(s)
Calcium Phosphates/adverse effects , Dental Cements , Models, Animal , Periapical Tissue/drug effects , Root Canal Filling Materials/adverse effects , Swine
3.
Article in English | IMSEAR | ID: sea-148747

ABSTRACT

Background: Formocresol remains to be the preferred medicament in pulpotomy, despite the concerns regarding tissue devitalization and systemic toxicity. Several materials were used as alternatives, but none proved significantly advantageous. Of recent, calcium phosphate cement (CPC) has been projected as an ideal pulpotomy material considering its tissue compatibility and dentinogenic properties. This study explores the suitability of a CPC formulation for pulpotomy, in comparison with formocresol. Materials and Methods: This comparative case study included 10 children (8-12 age group) having a pair of non-carious primary canines (both maxillary and mandibular) posted for extraction. Pulpotomy was performed with CPC in the right canines and formocresol in the left and sealed with IRM® (Dentsply). The teeth were extracted at 70 ± 5 days and sectioned and stained for the histopathological evaluation. Parameters such as pulpal inflammation, tissue reaction to material, dentine bridge formation, location of dentine bridge, quality of dentine formation in bridge, and connective tissue in bridge etc. were evaluated. Results: The histological assessment after 70 days showed no statistically significant difference between the two groups in any of the parameters. However, CPC gave more favorable results in pulpal inflammation, with a lower score of 1.6 against 2.6 for formocresol. CPC samples showed better formation of dentine bridge in quantity and quality. The mean scores for CPC for the extent of dentine bridge formation, quality of dentine bridge and connective tissue in the bridge, were 2.0, 1.4, and 1.2 respectively, whereas the corresponding values for formocresol were 0.8, 0.2, and 1.0. Conclusion: CPC is more compatible to pulp tissues than formocresol and it shows good healing potential. CPC is capable of inducing dentine formation without an area of necrosis.

4.
Article in English | IMSEAR | ID: sea-139777

ABSTRACT

Background : Calcium phosphate cements (CPC) are apparently good candidates for periodontal treatment by virtue of their biocompatibility, mouldability and osteoconductivity. However, the clinical efficacy in this regard has not been established. This study is aimed at the evaluation of the efficacy of a formulation of CPC in healing human periodontal intraosseous defects in comparison with hydroxyapatite ceramic granules. Materials and Methods : In this clinical study, 60 patients with periodontal defects were divided into 2 test groups and 1 control group. The defect sites in the test groups were repaired with CPC and hydroxyapatite ceramic granules (HAG). Debridement alone was given in the control group. The progress was assessed at 3, 6, 9 and 12 months observation intervals through soft tissue parameters (probing depth, attachment level and gingival recession). Results: CPC showed significantly better outcome. Probing depth reduction values of CPC, HAG and Control at 6 months were 5.40 ± 1.43, 3.75 ± 1.71 and 2.90 ± 1.48, and those at 12 months were 6.20 ± 1.80, 4.5 ± 1.91 and 2.95 ± 1.73. Clinical attachment gain values of CPC, HAG and Control at 6 months were 5.15 ± 1.50, 3.45 ± 1.96 and 2.25 ± 1.52, and those at 12 months were 5.80 ± 2.02, 3.55 ± 2.06 and 2.30 ± 1.78, In both cases the P value was <0.001 showing high significance. The gingival recession over 12 months, for the CPC group is lesser than that in the HAG group and the value for the control group is marginally higher than both. Soft-tissue measurements were appended by postoperative radiographs and surgical re-entry in selected cases. Conclusions: Calcium phosphate cement is found to be significantly better than hydroxyapatite ceramic granules. The material could be considered as a "barrier-graft".


Subject(s)
Absorbable Implants , Adult , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/surgery , Biocompatible Materials/therapeutic use , Bone Cements/therapeutic use , Bone Substitutes/therapeutic use , Calcium Phosphates/therapeutic use , Ceramics/therapeutic use , Debridement , Dental Scaling , Durapatite/therapeutic use , Female , Follow-Up Studies , Gingival Recession/surgery , Guided Tissue Regeneration, Periodontal/methods , Humans , Male , Middle Aged , Osteogenesis/physiology , Periodontal Attachment Loss/surgery , Periodontal Pocket/surgery , Periodontitis/surgery , Subgingival Curettage , Surgical Flaps , Treatment Outcome , Young Adult
5.
Article in English | IMSEAR | ID: sea-51812

ABSTRACT

Calcium phosphate cements (CPC) are self setting and biocompatible bone substitute materials with potential applications in dentistry. However, its clinical use has been challenged by poor rheological properties. A novel formulation of CPC has been developed, which gives a fully injectable and cohesive paste. This work investigates the suitability of the new "fully injectable calcium phosphate cement" (FI-CPC) for dental applications. The cementing properties, material characteristics, and the rheological properties were tested using a battery of material characteristics methods. The biocompatibility was also evaluated as per ISO 7405. The setting time (20 min) and compressive strength (>11 Mpa) of FI-CPC satisfy the clinical requirements. It underwent setting without any exothermic reaction, keeping good dimensional stability. The cement paste could be extruded through a 18-gauge needle, easily and fully. It showed excellent cohesion when immersed in water. FI-CPC was seen to set into a micro-porous mass of hydroxyapatite, the mineral part of human dentin. It showed good attachment to dentin walls, when filled in tooth perforations. FI-CPC was found non-toxic, non-allergic, non-pyrogenic, and soft-tissue compatible. The study shows that FI-CPC provides a self setting bio-compatible paste with excellent rheological properties for surgical applications. The set cement provides good and stable sealing. The osteoconductive property is an added advantage. FI-CPC proves to be an ideal material for endodontic sealing/filling and periodontic repair.


Subject(s)
Animals , Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Cells, Cultured , Chemistry, Pharmaceutical , Compressive Strength , Dental Materials/chemistry , Durapatite/chemistry , Electron Probe Microanalysis , Fibroblasts/drug effects , Humans , Materials Testing , Mice , Muscle, Skeletal/drug effects , Rheology , Skin/drug effects , Spectroscopy, Fourier Transform Infrared , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL